
USING LOCAL NETWORK AUDIT SENSORS

AS DATA SOURCES FOR INTRUSION

DETECTION

Daniel Hamburg ∗,1 York Tüchelmann ∗

∗ Integrated Information Systems Group, Ruhr University
Bochum, Germany

Abstract: The increase of attacks on public and private networks led to the
development of various methods to detect and prevent those attacks. To detect
attacks, network traffic has to be captured and analyzed.
We propose a new sensor framework to capture network packets directly on a
monitored host. The framework consists of three sensors, each capturing relevant
parts of a packet at different levels of the network stack.
The sensors do not impose any special purpose detection engine thus allowing the
integration into existing Intrusion Detection systems.

Keywords: Multi-Layer Sensors, Intrusion Detection, Intrusion Prevention,
Network Audit, Network Security

1. INTRODUCTION

Computer systems and networks -significant in
the context of infrastructure and work flows in
modern companies- require reliable services and
strong security functions to protect sensitive data
from attackers.

In the last years different technologies securing
computer systems and networks were developed,
targeting different attacks. Most of those security
systems protect a system or network from external
attackers who try to compromise the system or
reveal and alter sensitive data.

The inability of these systems to protect computer
systems from malicious insiders or outsiders who
have gained access on an internal system led to
the development of additional mechanisms, such
as Intrusion Detection Systems (IDS).

1 Many thanks to Sebastian Gajek for his very helpful
suggestions.

An IDS captures data and analyzes it to detect
attacks on the network or a single computer.
When it detects a malign event it generates an
alarm. According to the type of data captured
by the IDS sensors, IDS can be grouped in two
categories. Host based intrusion detection systems
(HIDS) capture local system data e.g. access logs
of a supervised host. Network intrusion detection
systems (NIDS) capture network packets of a
network segment. While HIDS are used to monitor
a single host NIDS are employed to protect whole
networks.

Another commonly used criterion to group IDS
bases on analysis methods namely pattern-based
and anomaly-based IDS. Pattern-based IDS use
specific patterns for every separate attack. How-
ever on the one hand this method leads to poor
performance in case of a large attack pattern
list, on the other hand to a reduced amount of
false positives. False positive denotes an alarm
generated by the IDS when there was actually
no attack. Anomaly-based systems try to detect
deviations of the actual system state. While those



systems are highly performing, they tend to gen-
erate high amounts of false positives.

Initially, IDS where designed only to generate
alarms after detecting an attack. Meanwhile new
systems emerged, which try to block malicious
network traffic. Those systems are called Intrusion
Prevention Systems (IPS).

However the effectiveness of all detection systems
depends on the captured data. In this paper we
introduce the use of local multi layer sensors to
audit local network data. Our framework consists
of three sensors that capture data inside the
network stack of the monitored host. The sensors
capture only significant parts of a network packet
and are construed to send them immediately to
a detection engine enabling a fast analysis and in
case of an IPS a fast response.

The sensors can be seen as an effort to close
the gap between HIDS and NIDS. Like a HIDS
they reside on the monitored host, but contrary
to analyzing log flies, like NIDS they analyze
incoming and outgoing network traffic. While the
combination of HIDS and NIDS features has been
proposed in related works, the way our sensors
capture traffic is new and helps to improve the
performance of the IDS.

The sensors do not need any additional hard- or
software but can be configured to cooperate with
existing detection engines. Though we enable a
faster and also more precise detection of attacks.

This paper is outlined as follows: In Section 2,
we introduce the Multi-Layer Sensors framework.
Section 3 gives a review of related works. Finally,
we conclude our work and point out future work
in Section 4.

2. USING MULTI-LAYER SENSORS TO
CAPTURE NETWORK TRAFFIC

Traversing the network stack, each layer of the
network stack alters packet data. This altering
means more than just removing the corresponding
headers. For example fragmented IP packets are
put together on the Internet layer before they are
handled to the Transport layer. Moreover IPSec
packets must be decrypted inside the Internet
layer before cleartext data is sent to Transport
layer. Different actions are performed on different
layers and different OS and applications may act
varying on the same type of packets. Regard-
ing the different behavior of systems Ptacek et.
al. (Ptacek and Newsham, 1998) made the follow-
ing statment

” A packet, by itself, is not as sig-
nificant to the system as the manner

in which the machine receiving that
packet behaves after processing it. ”

The basic idea of our sensor framework is to cap-
ture the header and payload data exactly before
it is processed by the OS or the application.

2.1 Network stack and sensor placement

Figure 1 shows a network stack and the placement
of the Multi-Layer Sensors (MLS) and of standard
NIDS sensors.

Let us take a closer look at the data that each
sensor captures. For sake of simplicity we will deal
only with packets that arrive at the monitored
host. 2

A standard NIDS sensor captures packets before
any header data is processed. When a packet
arrives at the host, the NIC produces a copy
of the packet and sends it to the NIDS sensor.
Standard NIDS sensors are able to capture the
data contained in the headers of all network layers
and the application payload.

In comparison to standard NIDS sensors, our
Multi-Layer Sensors (MLS) consist of three dif-
ferent sensors installed on the monitored host,
named Transport Layer Sensor (TLS), Applica-
tion Layer sensor (ALS) and Application sensor
(AS).

Transport Layer Sensor (TLS) captures data in-
side the Internet Layer, that is after IP fragments
have been reassembled and before the Internet
Layer performs any other task. Further, our TLS
does not capture all packet data, but only the
Internet- and Transport Layer headers. Appli-
cation Layer headers and application payload is
ignored.

Application Layer sensor (ALS) captures packets
at the interface between the operating system
and the application. Note that some HIDS use
network sensors on the same network stack level.
In contrast to them, our sensor does not capture
the application payload but only the Application
Layer header.

Application sensor (AS) captures the application
payload.

After capturing data, sensor immediately sends
data to the detection engine. There is no need
for a sensor to wait until the sensors at higher
network layers captured the same packet. The
detection engine analyzes data of the sensors
independent from each other but should also offer
the possibility to correlate the data coming from

2 Our sensors are also able to capture packets that leave
the monitored hosts.



Fig. 1. Network stack and sensors

different sensors to detect more complex attacks
offline.

2.2 MLS/TLS vs. NIDS sensor

Standard NIDS capture packets consecutively af-
ter they are picked up from the network by the
network interface card (NIC). The packets con-
tain data and headers of all layers. To detect an
attack that the monitored system is vulnerable to
the NIDS has to know how the network stack of
this particular host handles the packet. With this
knowledge, the NIDS can simulate the behavior
of the host and detect -in case of an IPS also
avert- attacks that harm the monitored system.
For example the NIDS has to simulate how the
monitored host combines IP-fragments to recon-
struct the initial IP packet. If the NIDS does not
exactly simulate the host’s behavior, it may miss
some attacks because of a different reassemble
of IP fragments. (Ptacek and Newsham, 1998)
gives some examples how the phenomenon of IP
fragment handling can be used to bypass detection
systems.

The requirement to simulate the behavior of the
monitored host results from the need to know
the exact behavior of the host’s network stack.
It is nearly impossible for a NIDS to handle the
amount of simulation data if it monitors a large
number of heterogeneous hosts. Because of the
resource intensive task of simulating the behavior
of different hosts, the NIDS fails to offer realtime
attack detection. In addition it is not possible to
exactly predict the behavior of systems which are
closed source.

Another problem occurs if the NIDS operates
in prevention mode. When a packet reaches the
host the NIPS has to take a decision whether to
forward the packet to the system or to drop it.
This decision can be taken only after the host’s
behavior has been simulated and analyzed to de-
tect possible attacks. Because of the time con-
suming nature of host simulation the decision can
be taken only after a delay. This may negatively
influence the usability of the monitored host.

Because of this drawbacks, most NIDS do not
simulate the system’s behavior but apply rules for
groups of systems that because of similar software
parameters like OS and installed applications are
assumed to have similar behavior. This enables
the optimization of NIDS resources but implies
also higher false alarm rates and the partial miss
of attacks.

The MLS captures data after it has been pro-
cessed by the underlying layers of the stack.
Therefore the data captured by our sensors is
identical to the one processed by the host’s net-
work stack and it is not necessary to simulate the
behavior of the system. The TLS e.g. captures
data after the reassembly of IP-fragments but be-
fore any other actions on the Internet or Transport
layer have been performed. Based on this data, the
detection engine can detect attacks that use data
inside the Internet and Transport layer headers.
Operated in IPS mode, the detection engine has
to analyze only a part of the packet data at a
time, namely the header and payload captured
by one of the sensors. When the packet passes
the TLS, the detection engine has to analyze only
the header of the Internet and Transport Layer
header. If the data inside those headers reveals an
attack the packet is dropped. If not, the packet is



passed back to the system. This results in a higher
performance when operated in prevention mode.

This gain of performance and especially the lack of
delay makes the generation of groups summarizing
similar systems obsolete which results in a lower
false alarm rate and higher amount of detected
attacks compared to NIDS.

2.3 MLS/ALS & AS vs. HIDS sensor

A HIDS sensor captures data at the same level
of the network stack as the ALS. Because Trans-
port and Internet Layer headers are removed by
underlying parts of the network stack, the sensor
captures only Application Layer header and pay-
load. Therefore, HIDS misses all attacks that use
information of the Internet or Transport Layer 3 .

TLS captures the Internet and Transport Layer
header data therefore enabling the detection en-
gine to detect those attacks.

After a packet has been handed over from the
operating system to the application, the appli-
cation layer header is processed. This process
may include the reassembly of application payload
from different packets into one stream, or even
the altering of payload, e.g. the conversion of
strings into the character encoding used by the
application.

To detect if the payload of a packet constitutes
an attack against the monitored host, the HIDS
has to recognize the reaction of the monitored
host to the payload. To do so the HIDS must
know the payload as processed by the application.
Therefore it has to simulate the behavior of the
host’s application layer stack. As mentioned in
the context of NIDS, this results in a decreased
performance and eventually false alarms if the
simulation fails. To circumvent this we decided to
divide the capturing of Application Layer header
and application payload on two sensors, namely
ALS and AS.

ALS is used to detect attacks that use Application
Layer header data, e.g. a HTTP-request string for
a server-side script causing a buffer overflow. AS is
used to detect attacks that use malicious applica-
tion payload, e.g. client-side Javascript revealing
the user’s password.

3. RELATED WORKS

Kerschbaum et. al. (Kerschbaum et al., 2000)
propose embedded sensors inside the operating
system and applications on the monitored hosts.

3 An enumeration of attacks that use such information

inside low level layers can be found in (Daniels and Spaf-
ford, 1999).

”Those sensors are pieces of software
that monitor a specific variable, activ-
ity or condition of a host.”

While this approach enables a very exact monitor-
ing of all actions on the host, which goes far be-
yond the events captured by our MLS, the method
involves a very high complexity to design those
sensors and adapt existing software. In addition,
the use of closed source software makes the use
of embedded sensors obsolete. On systems, where
the software can be adapted, it is reasonable to
implement embedded sensors to monitor events
that can not be detected by analyzing network
packets.

Zhang and Lee (Zhang and Lee, 2000) recommend
the use of a distributed IDS 4 to detect attacks
on elements of a wireless ad-hoc network. The
authors propose to combine sensors that analyze
network data similar to a NIDS sensor, ones that
analyze system calls and log files and also sensors
that capture parameters about the physical en-
vironment of the network elements. The network
data analyzed is provided exclusively by the NIDS
sensor which results in the problems discussed in
Chapter 2.2.

Wu et. al. (Wu et al., 2003) proposed a similar
idea of applying multiple specialized sensors at
different layers. The authors‘ sensors operate at
the network layer capturing packets from the NIC,
the kernel layer intercepting certain OS activities
(e.g file access, illegal signals) and the application
Layer catching calls to a set of library functions.
Alerts are collated using a central detection en-
gine, which scans for local and distributed attacks.
As incoming network packets are captured be-
tween the Host-To-Net and the Internet layer (of
the TCP/IP network model) the authors‘ sensors
have same shortcomings as standard NIDS.

The use of sensors that analyze system calls and
log flies can be found in both (Zhang and Lee,
2000) and (Wu et al., 2003). This type of sensors
are typical for HIDS that do not capture network
traffic. Those sensors do not capture network
packets that comprise the attack, but the impact
on the system caused by this attack. Therefore
those sensors in contrast to MLS completely lack
the ability to prevent an attack.

4. CONCLUSION AND FUTURE WORK

In this paper we introduce a new sensor frame-
work to capture network packets directly on the
monitored host. The framework consists of three
sensors which are integrated inside the operat-
ing system (Transport Layer Sensor, Application

4 An IDS without a central detection engine



Layer Sensor) and the application (Application
Sensor) thus capturing network packets before
they are processed, enabling high performance for
analysis and prevention mechanisms. Multi-Layer
Sensors (MLS) are a new contribution to the field
of network audit, aiming at network traffic of
sensitive hosts, e.g. servers.

Using the sensors does not impose any special pur-
pose detection engine because they are used only
for data gathering and designed to use standard
communication protocols, e.g. the Intrusion De-
tection Exchange Protocol (Feinstein et al., 2002),
to communicate with existing detection engines.

The three sensors capture data independent of
one another which enables them to send data to
different detection engines. As a result we can use
various detection engines to enable load balancing
and to omit a single point of failure.

Our future work aims at analyzing encrypted
traffic as used with standard security protocols,
such as SSH. In addition, we will analyze existing
protocols and eventually design a new one to
optimize the secure transmission of sensor data
to a detection engine and to efficiently coordinate
data originating from different sensors on the
same host.

REFERENCES

Daniels, Thomas E. and Eugene H. Spafford
(1999). Identification of host audit data to
detect attacks on low-level IP vulnerabilities.
Journal of Computer Security 7(1), 3–3.

Feinstein, B., G. Matthews and J. White (2002).
The intrusion detection exchange protocol
(idxp). Technical report. Internet draft.

Kerschbaum, Florian, Eugene H. Spafford and
Diego Zamboni (2000). Using embedded sen-
sors for detecting network attacks. In: Pro-
ceedings of the 1st ACM Workshop on Intru-
sion Detection Systems (Deborah Frincke and
Dimitris Gritzalis, Eds.). ACM SIGSAC. CE-
RIAS TR 2000-25.

Ptacek, Thomas H. and Timothy N. Newsham
(1998). Insertion, evasion, and denial of ser-
vice: Eluding network intrusion detection.
Technical report. Secure Networks, Inc.. Suite
330, 1201 5th Street S.W, Calgary, Alberta,
Canada, T2R-0Y6.

Wu, Y., B. Foo, Y. Mei and S. Bagchi (2003). Col-
laborative intrusion detection system (cids):
A framework for accurate and efficient ids. In:
Proceeding of 19th Annual Computer Security
Applications Conference.

Zhang, Y. and W. Lee (2000). Intrusion detec-
tion in wireless ad hoc networks. ACM MO-
BICOM.


